Main Memory Operation Buffering for Efficient R-Tree Update

daisy

Based on Biveinis, Saltenis and Jensen (Aalborg University) paper in VLDB 2007

Center for Data-intensive Systems

Setting

« A typical pervasive computing scenario

o Sampling of continuous processes via large numbers of sensors
o Maintenance of an up-to-date current state of the processes
o Query processing against the current state
o Example: moving objects
o The current positions of moving objects
« Large populations of objects are anticipated (mobile phone users)
o Updates are very frequent.

o E.g., 600,000 objects, each issuing an update every minute yields
10,000 updates per second.

o Indexing is essential to efficient query processing.
o The index must be stored on disk, at least in part.
o Existing indices do not support massive update loads.

Background: the R-tree

ghgap%b;ect %2__1_1J , fs :E f’/ %
S B T we R3
iiﬁé_?__itg_?___—E i ii B ;i / X \ \
m:"":—:?ﬂ _____ R10|[R11[R12 R13 R14 R15 Rl& R17|R18[R19
I — ¢ i V1l v v v
To Data Tuples

R-Tree Strength: Range Query R-Tree Weakness: Update

o Let's update position of b2

|--ZL S, o Delete the old b,: 2 traversals!
1
| a| | o Insert the new b,: 2 traversals!
ol b,
32 b2 :2 Sl I’1
1 S
a3 b2 d\
b, >
__ S, b|
T Query answer
L2 a,, a
i \ e WA o 1traversal=31/0s
/ \ 31/0s spent e 1 update=121/0s!
alala ||b,[b,

« Conclusion: R-tree updates are
expensive, can we do better?

Observations

e Several updates to the same leaf cause separate traversals
* Update locality is not exploited

* Main memory is not used

* High rate of updates is required to sustain accuracy

The RR-tree: the Data Structure

o A disk R-tree without any data structure modifications
o A single buffer for all incoming updates
o Any amount of memory, the more, the better

o Organized as a main-memory R-tree (can be accessed as
a list too)

« Data contains the flag to tell deletions from insertions

i1, d2, d3, i3, d4, i4, d9

R1|R2
R3|R4 | R5 R6 | R7
p1|p2 p3|p4 |p5| |p6 | p7 P9 |p1Qp11 [p1dp13

The RR-tree: Buffer Emptying

 When the buffer gets full, it is processed on the main tree
* Updates travel down the tree, sharing I/Os
* Small groups should be filtered

Buffer: i(a), i(b), i(c), i(e), d(g)

4 U

i(a), i(b), i(c), i(e) || d(g)

@ﬂﬂﬂ

i(a), i(e) || i(b) || i(c)

a lalalale || b b [b c,lc

I/O per operation

1/O per operation

Experiments: Main-Memory Utilisation

1.6

1.4 +

1.2

1
0.8
0.6
0.4
0.2

I] | | L
Queries per update 1:1

Querles per update 1:10000 ----

X

-+

0.4 0.6

0.3

Part of memory allocated to LRU

Experiments: Index Comparison

Buffer size in objects

Summary

1

‘R-tree ——+
RUM-tree ----s¢----
RY-tree - T
- S S
: e Ealh -
— ' "“'-I-:.H
e . g e
i TR _%?'a_hﬁh
ol ﬂé Bl EH*
100 1000 10000 100000

Presented a new main-memory buffering technique

for R-tree type indices

The general idea is to speed up updates by allowing

these to share I/O.

Uses partial buffer emptying
Empirical studies show that the proposal improves on

existing proposals.

See the paper for the analytical study

Future work

« Application to other types of indices
o Better main-memory indexing

« Exploring the query performance/update
performance trade-off

