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Setting

« A typical pervasive computing scenario

o Sampling of continuous processes via large numbers of sensors
o Maintenance of an up-to-date current state of the processes
o Query processing against the current state
o Example: moving objects
o The current positions of moving objects
« Large populations of objects are anticipated (mobile phone users)
o Updates are very frequent.

o E.g., 600,000 objects, each issuing an update every minute yields
10,000 updates per second.

o Indexing is essential to efficient query processing.
o The index must be stored on disk, at least in part.
o Existing indices do not support massive update loads.

Background: the R-tree
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R-Tree Strength: Range Query R-Tree Weakness: Update
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« Conclusion: R-tree updates are
expensive, can we do better?

Observations

e Several updates to the same leaf cause separate traversals
* Update locality is not exploited

* Main memory is not used

* High rate of updates is required to sustain accuracy

The RR-tree: the Data Structure

o A disk R-tree without any data structure modifications
o A single buffer for all incoming updates
o Any amount of memory, the more, the better

o Organized as a main-memory R-tree (can be accessed as
a list too)

« Data contains the flag to tell deletions from insertions
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The RR-tree: Buffer Emptying

 When the buffer gets full, it is processed on the main tree
* Updates travel down the tree, sharing I/Os
* Small groups should be filtered

Buffer: i(a), i(b), i(c), i(e), d(g)
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Experiments: Main-Memory Utilisation
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Experiments: Index Comparison

Buffer size in objects

Summary
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Presented a new main-memory buffering technique

for R-tree type indices

The general idea is to speed up updates by allowing

these to share I/O.

Uses partial buffer emptying
Empirical studies show that the proposal improves on

existing proposals.

See the paper for the analytical study

Future work

« Application to other types of indices
o Better main-memory indexing

« Exploring the query performance/update
performance trade-off



