
Main Memory Operation Buffering for Efficient R-Tree Update
Based on Biveinis, Šaltenis and Jensen (Aalborg University) paper in VLDB 2007

 A typical pervasive computing scenario

 Sampling of continuous processes via large numbers of sensors
 Maintenance of an up-to-date current state of the processes
 Query processing against the current state

 Example: moving objects
 The current positions of moving objects
 Large populations of objects are anticipated (mobile phone users)
 Updates are very frequent.
 E.g., 600,000 objects, each issuing an update every minute yields

10,000 updates per second.
 Indexing is essential to efficient query processing.
 The index must be stored on disk, at least in part.
 Existing indices do not support massive update loads.

Background: the R-tree

R-Tree Strength: Range Query

a
1

a
2

a
3

s
1

b
2

b
1

s
2

r
1

a
1
|a

2
|a

3
b

1
|b

2

s
1
|s

2

r
1
|r

2

...

Query answer:
a1, a3

3 I/Os spent

R-Tree Weakness: Update

 Let's update position of b2

 Delete the old b2: 2 traversals!

 Insert the new b2: 2 traversals!

a
1

a
2

a
3

s
1

b
2

b
1

s
2

r
1

b
2

s
2

a
1
|a

2
|a

3 b
1
|b

2

s
1
|s

2

r
1
|r

2

...

1 traversal = 3 I/Os

1 update = 12 I/Os!

Conclusion: R-tree updates are
expensive, can we do better?

Observations

• Several updates to the same leaf cause separate traversals

• Update locality is not exploited

• Main memory is not used

• High rate of updates is required to sustain accuracy

The RR-tree: the Data Structure

 A disk R-tree without any data structure modifications

 A single buffer for all incoming updates

 Any amount of memory, the more, the better

 Organized as a main-memory R-tree (can be accessed as
a list too)

 Data contains the flag to tell deletions from insertions

The RR-tree: Buffer Emptying

• When the buffer gets full, it is processed on the main tree

• Updates travel down the tree, sharing I/Os

• Small groups should be filtered

Buffer: i(a), i(b), i(c), i(e), d(g)

a
1
|a

2
|a

3
|a|e b

1
|b

2
|b

s
1
|s

2
|s

3

r
1
|r

2

...

c
1
|c

i(a), i(b), i(c), i(e) d(g)

...i(a), i(e) i(b) i(c)

Experiments: Main-Memory Utilisation

Experiments: Index Comparison

Summary
 Presented a new main-memory buffering technique

for R-tree type indices
 The general idea is to speed up updates by allowing

these to share I/O.
 Uses partial buffer emptying
 Empirical studies show that the proposal improves on

existing proposals.
 See the paper for the analytical study
 Future work
 Application to other types of indices
 Better main-memory indexing
 Exploring the query performance/update

performance trade-off

Setting

