
Main Memory Operation Buffering for Efficient R-Tree Update
Based on Biveinis, Šaltenis and Jensen (Aalborg University) paper in VLDB 2007

 A typical pervasive computing scenario

 Sampling of continuous processes via large numbers of sensors
 Maintenance of an up-to-date current state of the processes
 Query processing against the current state

 Example: moving objects
 The current positions of moving objects
 Large populations of objects are anticipated (mobile phone users)
 Updates are very frequent.
 E.g., 600,000 objects, each issuing an update every minute yields

10,000 updates per second.
 Indexing is essential to efficient query processing.
 The index must be stored on disk, at least in part.
 Existing indices do not support massive update loads.

Background: the R-tree

R-Tree Strength: Range Query

a
1

a
2

a
3

s
1

b
2

b
1

s
2

r
1

a
1
|a

2
|a

3
b

1
|b

2

s
1
|s

2

r
1
|r

2

...

Query answer:
a1, a3

3 I/Os spent

R-Tree Weakness: Update

 Let's update position of b2

 Delete the old b2: 2 traversals!

 Insert the new b2: 2 traversals!

a
1

a
2

a
3

s
1

b
2

b
1

s
2

r
1

b
2

s
2

a
1
|a

2
|a

3 b
1
|b

2

s
1
|s

2

r
1
|r

2

...

1 traversal = 3 I/Os

1 update = 12 I/Os!

Conclusion: R-tree updates are
expensive, can we do better?

Observations

• Several updates to the same leaf cause separate traversals

• Update locality is not exploited

• Main memory is not used

• High rate of updates is required to sustain accuracy

The RR-tree: the Data Structure

 A disk R-tree without any data structure modifications

 A single buffer for all incoming updates

 Any amount of memory, the more, the better

 Organized as a main-memory R-tree (can be accessed as
a list too)

 Data contains the flag to tell deletions from insertions

The RR-tree: Buffer Emptying

• When the buffer gets full, it is processed on the main tree

• Updates travel down the tree, sharing I/Os

• Small groups should be filtered

Buffer: i(a), i(b), i(c), i(e), d(g)

a
1
|a

2
|a

3
|a|e b

1
|b

2
|b

s
1
|s

2
|s

3

r
1
|r

2

...

c
1
|c

i(a), i(b), i(c), i(e) d(g)

...i(a), i(e) i(b) i(c)

Experiments: Main-Memory Utilisation

Experiments: Index Comparison

Summary
 Presented a new main-memory buffering technique

for R-tree type indices
 The general idea is to speed up updates by allowing

these to share I/O.
 Uses partial buffer emptying
 Empirical studies show that the proposal improves on

existing proposals.
 See the paper for the analytical study
 Future work
 Application to other types of indices
 Better main-memory indexing
 Exploring the query performance/update

performance trade-off

Setting

